光学选别机主要通过光源、传感器、图像处理系统和执行机构等组成。光源照射在待选物体上,物体反射的光经过传感器接收并转化为电信号。然后,图像处理系统对接收到的信号进行处理和分析,提取出物体的特征信息。根据预设的选别标准,执行机构将不符合要求的物体从流水线中分拣出来。
光学选别机的应用领域
光学选别机在食品加工行业中的应用非常广泛。例如,在水果和蔬菜加工过程中,光学选别机可以根据颜色、大小和形状等特征,将不合格的水果或蔬菜自动分拣出来,提高产品的质量和口感。光学选别机还可以用于糖果、坚果、海产品等食品的分选。
在回收利用领域,光学选别机可以对废纸、废塑料、废玻璃等进行分选,将有价值的物体分拣出来进行再利用,减少资源的浪费。光学选别机的高速度和高精度使得回收利用过程更加高效和环保。
光学选别机在矿石分选中也有重要应用。通过对矿石的颜色、密度、透光性等特征进行分析,光学选别机可以将有价值的矿石从矿石矿石中分离出来,提高矿石的回收率和经济效益。
光学选别机的发展趋势
视觉光学分选机工作原理
1
图像采集:配备高精度的光学成像系统,包括工业相机、镜头和照明设备。工业相机可以是面阵相机或线阵相机,根据分选物体的特点和速度要求选择。镜头用于聚焦光线,使物体在相机成像平面上清晰成像。照明设备提供合适的光照条件,确保物体的特征能够被清晰地捕捉,例如对于透明或反光物体,需要特殊的照明方式来避免反射干扰图像采集。
2
图像处理与特征提取:采集到的图像传输到计算机系统中,利用专门的图像处理软件(如 Halcon
等)进行处理。首先进行图像预处理,包括滤波去除噪声、色彩校正等操作,以提高图像质量。然后,通过各种算法提取物体的特征,如利用边缘检测算法提取物体的轮廓,通过颜色空间分析获取物体的颜色特征,使用纹理分析算法识别物体的表面纹理等。
3
分类决策:根据提取的特征,软件按照预先设定的分选规则进行分类决策。这些规则可以是基于尺寸范围(如将直径在一定范围内的零件分为一类)、形状类别(如圆形、方形等)、颜色差异(如将不同颜色的产品分开)或表面缺陷状况(如将有划痕或裂纹的产品挑出)等。分类决策的结果转化为控制信号发送给分选执行机构。
4
分选执行:分选执行机构通常是由机器人手臂、气动或电动推杆、传送带等组成的自动化系统。例如,机器人手臂根据控制信号准确地抓取物体,并将其放置到对应的分类区域
5
或者通过控制传送带的转向和分流装置,将物体引导到不同的出口通道,从而完成分选过程。
视觉光学分选机课程简介
食品行业
用于分选食品原料或成品,如将大小不同的水果(苹果、橙子等)分类,挑出有病虫害或表面损伤的果实;在坚果加工中,将形状完整、色泽良好的坚果与破碎或变质的坚果分开;对谷物进行杂质去除和按颗粒大小分级等。
咨询详情
矿业和建材行业
在矿石分选方面,可以根据矿石的颜色、光泽、纹理等特征,将不同种类的矿石(如铜矿石、铁矿石等)分离,提高矿石的品位。在建材领域,对建筑石料进行尺寸分级和质量筛选,挑出有裂缝或不符合规格的石料。
咨询详情
塑料和橡胶行业
用于塑料制品的质量控制,如将注塑成型的产品按尺寸精度、外观质量分类,剔除有飞边、气泡等缺陷的产品;在橡胶制品中,挑选出颜色均匀、表面光滑的合格产品,对不合格产品进行回收处理。
咨询详情