怎么学好数学
一般函数按照定义域、值域、基本图象、单调性、奇偶性、周期性、对称性来进行,特别是要记住一次函数、二次函数、指数函数、对数函数和函数f(x)=ax+b/x(a>0,b>0)的图象和性质。对于函数的一些特殊性质是必须记的且必须会灵活运用,如:函数f(x)=0既是奇函数又是偶函数;单调函数存在反函数,且其反函数在其对应区间上具有相同的单调性;指数函数与对数函数互为反函数,它们的图象关于直线y=x对称;由f(a+x)=f(a-x)去找函数的对称性,由f(x+a)=f(X-a)去找函数的周期性。
咨询详情
如等差数列与等比数列可以从定义,通项公式,等差(比)中项,前n项和公式,性质人手,如下标成等差数列的项所构成的数列;间隔相等的数列片断和构成的数列;非零的常数列。记的结论如三角形中的三个内角成等差数列,则其中必有一个角为60°,若是三条边成等差数列,三内角的正弦值成等差数列,两个等差数列中相同的项仍构成等差数列,其公差是已知两数列公差的小公倍数;在求数列通项公式时要注意相邻两项的比(差)的关系,以及在对已知条件变形(如加常数,取对数,取倒数)转化为等差(比)数列,在求前n和公式时对于等比数列的求法,以及裂项相消法;同时要注意与函数和不等式的联系。
咨询详情在射影平面内,两个不同中心的射影线束,其对应直线的交点的轨迹是一条圆锥曲线。两个不同底的射影点列,其对应点的连线的包络是一条圆锥曲线。
所谓的射影线束是指,给定两个中心O、O',从O和O'各自引出4条直线a、b、c、d和a’、b'、c'、d'。如果这4条直线的交比对应相等,即(ab,cd)=(a'b',c'd'),那么称这两个线束互为射影线束。射影线束的对应直线(上例中的a和a',b和b',c和c',d和d')的交点一定位于某圆锥曲线上。
同理,所谓的射影点列是指,给定两条底o、o',在o和o'上各自取4个点A、B、C、D和A'、B'、C'、D'。如果这4个点的交比对应相等,即(AB,CD)=(A'B',C'D'),那么称这两个点列互为射影点列。射影点列的对应点(上例中的A和A',B和B',C和C',D和D')的连线一定与某圆锥曲线相切
只要一个电话
我们免费为您回电