简言之,数据科学是一个领域,本质上是利用数据来解决问题,并为公司和组织带来影响、价值和洞察力。数据科学已被应用于广泛的学科和行业,涵盖教育、金融、医疗、地质、零售、旅游和电子竞技。数据科学的技术涉及数据收集、数据预处理、探索性数据分析、数据可视化、统计分析、机器学习、编程和软件工程的使用。除了技术方面,还有各种软技能是数据科学家所需要的。以下信息图提供了数据科学家基本技能的高层次概述。
专注于基础
数据处理(Python —Pandas,R — dplyr)。
阅读统计学方面的知识,这样你就可以在你的模型中应用它们。例如,应用适当的统计学来比较模型(参数与非参数)。
探索性数据分析和描述性统计,以获得数据的概况从建立简单的、可解释的机器学习模型(线性回归、基于树的方法)开始。
从构建简单且可解释的机器学习模型(线性回归,基于树的方法)开始。
使用你有信心使用的机器学习方法(知道其背后的数学)。立即预约课程
课程简介
让数据分析师、工程师,成长为数据科学家
弥补缺陷,掌握数据科学家应具备的全方位综合技能
学习到先进、前沿的算法模型及高性能技术,大大提升工作效率
掌握大数据治理、架构设计,提升宏观视角,决策企业战略
掌握项目管理能力,学会搭建数据团队,部门沟通协调,化利用资源
数据相关岗位的专业人士,如数据分析师,数据咨询顾问,大数据、机器学习、算法工程师等
数据相关部门的管理人士,如数据部主管、总监,首席数据官(CDO),CTO,CIO等
数据领域的研究或教育人士,如科研人员、研究员,高校数据相关专业教师等
需要具备CDA LEVEL 1+2的知识技能,包括数据分析、数据挖掘、大数据等技术
掌握java基础编程,python、R等相关数据分析编程软件,实现数据挖掘全流程
有一定的工作经验,具备良好的沟通交流能力
案例介绍
Cifar-10是由深度学习大师 Geoffrey Hinton 教授与其在加拿大多伦多大学的学生 Alex Krixhevsky 与
Vinoid Nair 所整理之影像数据集, 包含 6 万笔 32*32 低分辨率之彩色图片, 其中 5 万笔为训练集; 1 万笔为测试集,
是机器学习中常用的图片辨识数据集。Cifar-10 的所有图片被分为 10 个类别(飞机、汽车、鸟、猫、鹿、狗、青蛙、船、卡车)。
技能涉及
Keras、TensorFlow、MLP(多层感知器)、DNN(普通深度网络)模型、CNN(卷积神经网络)模型。
课程大纲
只要一个电话
我们免费为您回电